Fuel cells come in many varieties; however, they all work in the same general manner. They are made up of three segments which are sandwiched together: the anode, the electrolyte, and the cathode. Two chemical reactions occur at the interfaces of the three different segments. The net result of the two reactions is that fuel is consumed, water or carbon dioxide is created, and an electric current is created, which can be used to power electrical devices, normally referred to as the load.

At the anode a catalyst oxidizes the fuel, usually hydrogen, turning the fuel into a positively charged ion and a negatively charged electron. The electrolyte is a substance specifically designed so ions can pass through it, but the electrons cannot. The freed electrons travel through a wire creating the electric current. The ions travel through the electrolyte to the cathode. Once reaching the cathode, the ions are reunited with the electrons and the two react with a third chemical, usually oxygen, to create water or carbon dioxide.

A block diagram of a fuel cell

The most important design features in a fuel cell are:

  • The electrolyte substance. The electrolyte substance usually defines the type of fuel cell.
  • The fuel that is used. The most common fuel is hydrogen.
  • The anode catalyst, which breaks down the fuel into electrons and ions. The anode catalyst is usually made up of very fine platinum powder.
  • The cathode catalyst, which turns the ions into the waste chemicals like water or carbon dioxide. The cathode catalyst is often made up of nickel.

A typical fuel cell produces a voltage from 0.6 V to 0.7 V at full rated load. Voltage decreases as current increases, due to several factors:

  • Activation loss
  • Ohmic loss (voltage drop due to resistance of the cell components and interconnects)
  • Mass transport loss (depletion of reactants at catalyst sites under high loads, causing rapid loss of voltage).[3]

To deliver the desired amount of energy, the fuel cells can be combined in series and parallel circuits, where series yields higher voltage, and parallel allows a higher current to be supplied. Such a design is called a fuel cell stack. The cell surface area can be increased, to allow stronger current from each cell.

[edit]Proton exchange membrane fuel cells

In the archetypical hydrogen–oxygen proton exchange membrane fuel cell[4] (PEMFC) design, a proton-conducting polymer membrane, (theelectrolyte), separates the anode and cathode sides. This was called a "solid polymer electrolyte fuel cell" (SPEFC) in the early 1970s, before the proton exchange mechanism was well-understood. (Notice that "polymer electrolyte membrane" and "proton exchange mechanism" result in the same acronym.)

On the anode side, hydrogen diffuses to the anode catalyst where it later dissociates into protons and electrons. These protons often react with oxidants causing them to become what is commonly referred to as multi-facilitated proton membranes. The protons are conducted through the membrane to the cathode, but the electrons are forced to travel in an external circuit (supplying power) because the membrane is electrically insulating. On the cathode catalyst, oxygen molecules react with the electrons (which have traveled through the external circuit) and protons to form water — in this example, the only waste product, either liquid or vapor.

In addition to this pure hydrogen type, there are hydrocarbon fuels for fuel cells, including dieselmethanol (see: direct-methanol fuel cells andindirect methanol fuel cells) and chemical hydrides. The waste products with these types of fuel are carbon dioxide and water.

Construction of a high temperature PEMFC: Bipolar plate as electrode with in-milled gas channel structure, fabricated from conductive composites (enhanced with graphitecarbon blackcarbon fiber, and/or carbon nanotubes for more conductivity);[5] Porous carbon papers; reactive layer, usually on the polymermembrane applied; polymer membrane.

Condensation of water produced by a PEMFC on the air channel wall. The gold wire around the cell ensures the collection of electric current.[6]

The different components of a PEMFC are (i) bipolar plates, (ii)electrodes, (iii) catalyst, (iv) membrane, and (v) the necessary hardwares.[7] The materials used for different parts of the fuel cells differ by type. The bipolar plates may be made of different types of materials, such as, metal, coated metal, graphite, flexible graphite, C–C compositecarbonpolymer composites etc.[8] The membrane electrode assembly (MEA), is referred as the heart of the PEMFC and usually made of a proton exchange membrane sandwiched between two catalyst coated carbon papersPlatinum and/or similar type of noble metals are usually used as the catalyst for PEMFC. The electrolyte could be a polymer membrane.

[edit]Proton exchange membrane fuel cell design issues

  • Costs. In 2002, typical fuel cell systems cost US$1000 per kilowatt of electric power output. In 2009, the Department of Energy reported that 80-kW automotive fuel cell system costs in volume production (projected to 500,000 units per year) are $61 per kilowatt.[9] The goal is $35 per kilowatt. In 2008 UTC Power has 400 kW stationary fuel cells for $1,000,000 per 400 kW installed costs. The goal is to reduce the cost in order to compete with current market technologies including gasoline internal combustion engines. Many companies are working on techniques to reduce cost in a variety of ways including reducing the amount of platinum needed in each individual cell. Ballard Power Systemshave experiments with a catalyst enhanced with carbon silk which allows a 30% reduction (1 mg/cm² to 0.7 mg/cm²) in platinum usage without reduction in performance.[10] Monash University,Melbourne uses PEDOT as a cathode.[11] A 2011 published study[12] documented the first ever metal free electrocatalyst using relatively inexpensive doped carbon nanotubes that are less than 1% the cost of platinum and are of equal or superior performance.
  • The production costs of the PEM (proton exchange membrane). The Nafion membrane currently costs $566/m². In 2005 Ballard Power Systems announced that its fuel cells will use Solupor, a porous polyethylene film patented by DSM.[13][14]
  • Water and air management[15] (in PEMFCs). In this type of fuel cell, the membrane must be hydrated, requiring water to be evaporated at precisely the same rate that it is produced. If water is evaporated too quickly, the membrane dries, resistance across it increases, and eventually it will crack, creating a gas "short circuit" where hydrogen and oxygen combine directly, generating heat that will damage the fuel cell. If the water is evaporated too slowly, the electrodes will flood, preventing the reactants from reaching the catalyst and stopping the reaction. Methods to manage water in cells are being developed like electroosmotic pumps focusing on flow control. Just as in a combustion engine, a steady ratio between the reactant and oxygen is necessary to keep the fuel cell operating efficiently.
  • Temperature management. The same temperature must be maintained throughout the cell in order to prevent destruction of the cell throughthermal loading. This is particularly challenging as the 2H2 + O2 -> 2H2O reaction is highly exothermic, so a large quantity of heat is generated within the fuel cell.
  • Durability, service life, and special requirements for some type of cells. Stationary fuel cell applications typically require more than 40,000 hours of reliable operation at a temperature of -35 °C to 40 °C (-31 °F to 104 °F), while automotive fuel cells require a 5,000 hour lifespan (the equivalent of 150,000 miles) under extreme temperatures. Current service life is 7,300 hours under cycling conditions.[16] Automotive engines must also be able to start reliably at -30 °C (-22 °F) and have a high power to volume ratio (typically 2.5 kW per liter).
  • Limited carbon monoxide tolerance of some

Tags :
Your rating: None Average: 4.5 (6 votes)

Posted by

Fri, 22/04/2011 - 16:21