data structures
In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be usedefficiently.
Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.
Data structures are used in almost every program or software system. Data structures provide a means to manage huge amounts of data efficiently, such as large databases and internet indexing services. Usually, efficient data structures are a key to designing efficient algorithms. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design.
- An array data structure stores a number of elements of the same type in a specific order. They are accessed using an integer to specify which element is required (although the elements may be of almost any type). Arrays may be fixed-length or expandable.
- Record (also called tuple or struct) Records are among the simplest data structures. A record is a value that contains other values, typically in fixed number and sequence and typically indexed by names. The elements of records are usually called fields or members.
- A hash or dictionary or map is a more flexible variation on a record, in which name-value pairs can be added and deleted freely.
- Union. A union type definition will specify which of a number of permitted primitive types may be stored in its instances, e.g. "float or long integer". Contrast with a record, which could be defined to contain a float and an integer; whereas, in a union, there is only one value at a time.
- A tagged union (also called a variant, variant record, discriminated union, or disjoint union) contains an additional field indicating its current type, for enhanced type safety.
- A set is an abstract data structure that can store specific values, without any particular order, and no repeated values. Values themselves are not retrieved from sets, rather one tests a value for membership to obtain a boolean "in" or "not in".
- An object contains a number of data fields, like a record, and also a number of program code fragments for accessing or modifying them. Data structures not containing code, like those above, are called plain old data structure.
Basic principles
Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address—a bit string that can be itself stored in memory and manipulated by the program. Thus the record and array data structures are based on computing the addresses of data items with arithmetic operations; while the linked data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways (as in XOR linking)
The implementation of a data structure usually requires writing a set of procedures that create and manipulate instances of that structure. The efficiency of a data structure cannot be analyzed separately from those operations. This observation motivates the theoretical concept of an abstract data type, a data structure that is defined indirectly by the operations that may be performed on it, and the mathematical properties of those operations (including their space and time cost).
Language support
Most assembly languages and some low-level languages, such as BCPL(Basic Combined Programming Language), lack support for data structures. Many high-level programming languages, and some higher-level assembly languages, such as MASM, on the other hand, have special syntax or other built-in support for certain data structures, such as vectors (one-dimensional arrays) in the C language or multi-dimensional arrays in Pascal.
Most programming languages feature some sorts of library mechanism that allows data structure implementations to be reused by different programs. Modern languages usually come with standard libraries that implement the most common data structures. Examples are the C++ Standard Template Library, the Java Collections Framework, and Microsoft's .NET Framework.
Modern languages also generally support modular programming, the separation between the interface of a library module and its implementation. Some provide opaque data types that allow clients to hide implementation details. Object-oriented programming languages, such as C++, Java and .NET Framework use classes for this purpose.
Many known data structures have concurrent versions that allow multiple computing threads to access the data structure simultaneously.
This is a list of data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running time of subset of this list seecomparison of data structures.
Binary trees
- AA tree
- AVL tree
- Binary search tree
- Binary tree
- Cartesian tree
- Pagoda
- Randomized binary search tree
- Red-black tree
- Rope
- Scapegoat tree
- Self-balancing binary search tree
- Splay tree
- T-tree
- Tango tree
- Threaded binary tree
- Top tree
- Treap
- Weight-balanced tree
B-trees
Heaps
Heap
- Binary heap
- Binomial heap
- Fibonacci heap
- 2-3 heap
- Soft heap
- Pairing heap
- Leftist heap
- Treap
- Beap
- Skew heap
- Ternary heap
- D-ary heap